NASA Closer to Using Nuclear Reactors for Powering Space Missions


Article Image

NASA has given new life to the idea of using nuclear fission to power space missions, something it last considered in the 1960s. Now for three years, it’s been funding the development of a project called Kilopowerthat could be the key to colonizing Mars and other planets.

The goal for the project is to develop a “low-cost, scalable fission power system” for providing power in space. The Kilopower tech aims to achieve that by creating smaller reactors that can be combined to provide the necessary amount of energy. The scientists envision that the uranium-splitting Kilopower reactors can be used in multiples on Mars instead of one large power plant. This would result in a new generation of surface landers and human missions that originate from Mars.

In fact, the researchers estimate Mars surface missions would need around 40kW of power altogether. This amount of energy can power “about eight houses on Earth,” according to NASA. The 6.5-feet-tall Kilopower reactors are each designed to provide 1-10 kW of electrical power to a spacecraft. Thanks to nuclear fission, with 4 or 5 Kilopower reactors, NASA could power a Mars colony, running with all the equipment necessary to produce fuel, clean the air and water, and charge all the batteries.

What is nuclear fission? It’s the process of splitting of a heavy atomic nucleus into two lighter nuclei, releasing tremendous amounts of energy which is converted into electrical power. Atomic bombs and nuclear power plants utilize fission.

Sasha Harriet

Sasha Harriet

As content editor, I get to do what I love everyday. Tweet, share and promote the best content our tools find on a daily basis.

I have a crazy passion for #music, #celebrity #news & #fashion! I'm always out and about on Twitter.
Sasha Harriet

More from Around the Web

Subscribe To Our Newsletter

Join our mailing list to receive the latest news from our network of site partners.

You have Successfully Subscribed!

Pin It on Pinterest