Simulating the universe using Einstein’s theory of gravity may solve cosmic puzzles

simulation of lumpy universe
UNEVEN TERRAIN Universe simulations that consider general relativity (one shown) may shift knowledge of the cosmos.

If the universe were a soup, it would be more of a chunky minestrone than a silky-smooth tomato bisque.

Sprinkled with matter that clumps together due to the insatiable pull of gravity, the universe is a network of dense galaxy clusters and filaments — the hearty beans and vegetables of the cosmic stew. Meanwhile, relatively desolate pockets of the cosmos, known as voids, make up a thin, watery broth in between.

Until recently, simulations of the cosmos’s history haven’t given the lumps their due. The physics of those lumps is described by general relativity, Albert Einstein’s theory of gravity. But that theory’s equations are devilishly complicated to solve. To simulate how the universe’s clumps grow and change, scientists have fallen back on approximations, such as the simpler but less accurate theory of gravity devised by Isaac Newton.

Relying on such approximations, some physicists suggest, could be mucking with measurements, resulting in a not-quite-right inventory of the cosmos’s contents. A rogue band of physicists suggests that a proper accounting of the universe’s clumps could explain one of the deepest mysteries in physics: Why is the universe expanding at an increasingly rapid rate?

The accepted explanation for that accelerating expansion is an invisible pressure called dark energy. In the standard theory of the universe, dark energy makes up about 70 percent of the universe’s “stuff” — its matter and energy. Yet scientists still aren’t sure what dark energy is, and finding its source is one of the most vexing problems of cosmology.

Perhaps, the dark energy doubters suggest, the speeding up of the expansion has nothing to do with dark energy. Instead, the universe’s clumpiness may be mimicking the presence of such an ethereal phenomenon.

Most physicists, however, feel that proper accounting for the clumps won’t have such a drastic impact. Robert Wald of the University of Chicago, an expert in general relativity, says that lumpiness is “never going to contribute anything that looks like dark energy.” So far, observations of the universe have been remarkably consistent with predictions based on simulations that rely on approximations.

Story continues after image

The universe has gradually grown lumpier throughout its history. During inflation, rapid expansion magnified tiny quantum fluctuations into minute density variations. Over time, additional matter glommed on to dense spots due to the stronger gravitational pull from the extra mass. After 380,000 years, those blips were imprinted as hot and cold spots in the cosmic microwave background, the oldest light in the universe. Lumps continued growing for billions of years, forming stars, planets, galaxies and galaxy clusters.

history of the lumpy universe

As observations become more detailed, though, even slight inaccuracies in simulations could become troublesome. Already, astronomers are charting wide swaths of the sky in great detail, and planning more extensive surveys. To translate telescope images of starry skies into estimates of properties such as the amount of matter in the universe, scientists need accurate simulations of the cosmos’s history. If the detailed physics of clumps is important, then simulations could go slightly astray, sending estimates off-kilter. Some scientists already suggest that the lumpiness is behind a puzzling mismatch of two estimates of how fast the universe is expanding.

Researchers are attempting to clear up the debate by conquering the complexities of general relativity and simulating the cosmos in its full, lumpy glory. “That is really the new frontier,” says cosmologist Sabino Matarrese of the University of Padua in Italy, “something that until a few years ago was considered to be science fiction.” In the past, he says, scientists didn’t have the tools to complete such simulations. Now researchers are sorting out the implications of the first published results of the new simulations. So far, dark energy hasn’t been explained away, but some simulations suggest that certain especially sensitive measurements of how light is bent by matter in the universe might be off by as much as 10 percent.

Soon, simulations may finally answer the question: How much do lumps matter? The idea that cosmologists might have been missing a simple answer to a central problem of cosmology incessantly nags some skeptics. For them, results of the improved simulations can’t come soon enough. “It haunts me. I can’t let it go,” says cosmologist Rocky Kolb of the University of Chicago.

Smooth universe

By observing light from different eras in the history of the cosmos, cosmologists can compute the properties of the universe, such as its age and expansion rate. But to do this, researchers need a model, or framework, that describes the universe’s contents and how those ingredients evolve over time. Using this framework, cosmologists can perform computer simulations of the universe to make predictions that can be compared with actual observations.

Clumps and filaments of matter thread through a simulated universe 2 billion light years across. This simulation incorporates some aspects of Einstein’s theory of general relativity, allowing for detailed results while avoiding the difficulties of the full-fledged theory.

COSMIC WEBAfter Einstein introduced his theory in 1915, physicists set about figuring out how to use it to explain the universe. It wasn’t easy, thanks to general relativity’s unwieldy, difficult-to-solve suite of equations. Meanwhile, observations made in the 1920s indicated that the universe wasn’t static as previously expected; it was expanding. Eventually, researchers converged on a solution to Einstein’s equations known as the Friedmann-Lemaître-Robertson-Walker metric. Named after its discoverers, the FLRW metric describes a simplified universe that is homogeneous and isotropic, meaning that it appears identical at every point in the universe and in every direction. In this idealized cosmos, matter would be evenly distributed, no clumps. Such a smooth universe would expand or contract over time.

A smooth-universe approximation is sensible, because when we look at the big picture, averaging over the structures of galaxy clusters and voids, the universe is remarkably uniform. It’s similar to the way that a single spoonful of minestrone soup might be mostly broth or mostly beans, but from bowl to bowl, the overall bean-to-broth ratios match.

In 1998, cosmologists revealed that not only was the universe expanding, but its expansion was also accelerating (SN: 2/2/08, p. 74). Observations of distant exploding stars, or supernovas, indicated that the space between us and them was expanding at an increasing clip. But gravity should slow the expansion of a universe evenly filled with matter. To account for the observed acceleration, scientists needed another ingredient, one that would speed up the expansion. So they added dark energy to their smooth-universe framework.

Now, many cosmologists follow a basic recipe to simulate the universe — treating the cosmos as if it has been run through an imaginary blender to smooth out its lumps, adding dark energy and calculating the expansion via general relativity. On top of the expanding slurry, scientists add clumps and track their growth using approximations, such as Newtonian gravity, which simplifies the calculations.

In most situations, Newtonian gravity and general relativity are near-twins. Throw a ball while standing on the surface of the Earth, and it doesn’t matter whether you use general relativity or Newtonian mechanics to calculate where the ball will land — you’ll get the same answer. But there are subtle differences. In Newtonian gravity, matter directly attracts other matter. In general relativity, gravity is the result of matter and energy warping spacetime, creating curves that alter the motion of objects (SN: 10/17/15, p. 16). The…

Follow Me


COO at oneQube
COO @oneqube | Angel Investor | Proud mom | Advisor @TheTutuProject | Let's Go #NYRangers
Follow Me

More from Around the Web

Subscribe To Our Newsletter

Join our mailing list to receive the latest news from our network of site partners.

You have Successfully Subscribed!

Pin It on Pinterest