Half Life: The Decay of Knowledge and What to Do About It

Understanding the concept of a half-life will change what you read and how you invest your time. It will explain why our careers are increasingly specialized and offer a look into how we can compete more effectively in a very crowded world.

The Basics

A half-life is the time taken for something to halve its quantity. The term is most often used in the context of radioactive decay, which occurs when unstable atomic particles lose energy. Twenty-nine elements are known to be capable of undergoing this process. Information also has a half-life, as do drugs, marketing campaigns, and all sorts of other things. We see the concept in any area where the quantity or strength of something decreases over time.

Radioactive decay is random, and measured half-lives are based on the most probable rate. We know that a nucleus will decay at some point; we just cannot predict when. It could be anywhere between instantaneous and the total age of the universe. Although scientists have defined half-lives for different elements, the exact rate is completely random.

Half-lives of elements vary tremendously. For example, carbon takes millions of years to decay; that’s why it is stable enough to be a component of the bodies of living organisms. Different isotopes of the same element can also have different half-lives.

Three main types of nuclear decay have been identified: alpha, beta, and gamma. Alpha decay occurs when a nucleus splits into two parts: a helium nucleus and the remainder of the original nucleus. Beta decay occurs when a neutron in the nucleus of an element changes into a proton. The result is that it turns into a different element, such as when potassium decays into calcium. Beta decay also releases a neutrino — a particle with virtually no mass. If a nucleus emits radiation without experiencing a change in its composition, it is subject to gamma decay. Gamma radiation contains an enormous amount of energy.

The Discovery of Half-Lives

The discovery of half-lives (and alpha and beta radiation) is credited to Ernest Rutherford, one of the most influential physicists of his time. Rutherford was at the forefront of this major discovery when he worked with physicist Joseph John Thompson on complementary experiments leading to the discovery of electrons. Rutherford recognized the potential of what he was observing and began researching radioactivity. Two years later, he identified the distinction between alpha and beta rays. This led to his discovery of half-lives, when he noticed that samples of radioactive materials took the same amount of time to decay by half. By 1902, Rutherford and his collaborators had a coherent theory of radioactive decay (which they called “atomic disintegration”). They demonstrated that radioactive decay enabled one element to turn into another — research which would earn Rutherford a Nobel Prize. A year later, he spotted the missing piece in the work of the chemist Paul Villard and named the third type of radiation gamma.

Half-lives are based on probabilistic thinking. If the half-life of an element is seven days, it is most probable that half of the atoms will have decayed in that time. For a large number of atoms, we can expect half-lives to be fairly consistent. It’s important to note that radioactive decay is based on the element itself, not the quantity of it. By contrast, in other situations, the half-life may vary depending on the amount of material. For example, the half-life of a chemical someone ingests might depend on the quantity.

In biology, a half-life is the time taken for a substance to lose half its effects. The most obvious instance is drugs; the half-life is the time it takes for their effect to halve, or for half of the substance to leave the body. The half-life of caffeine is around 6 hours, but (as with most biological half-lives) numerous factors can alter that number. People with compromised liver function or certain genes will take longer to metabolize caffeine. Consumption of grapefruit juice has been shown in some studies to slow caffeine metabolism. It takes around 24 hours for a dose of caffeine to fully leave the body.

The half-lives of drugs vary from a few seconds to several weeks. To complicate matters, biological half-lives vary for different parts of the body. Lead has a half-life of around a month in the blood, but a decade in bone. Plutonium in bone has a half-life of a century — more than double the time for the liver.

Marketers refer to the half-life of a campaign — the time taken to receive half the total responses. Unsurprisingly, this time varies among media. A paper catalog may have a half-life of about three weeks, whereas a tweet might have a half-life of a few minutes. Calculating this time is important for establishing how frequently a message should be sent.

“Every day that we read the news we have the possibility of being confronted with a fact about our world that is wildly different from what we thought we knew.”

The Half-Life of Facts

In The Half-Life of Facts: Why Everything We Know Has an Expiration Date, Samuel Arbesman (see our Knowledge Project interview) posits that facts decay over time until they are no longer facts or perhaps no longer complete. According to Arbesman, information has a predictable half-life: the time taken for half of it to be replaced or disproved. Over time, one group of facts replaces another. As our tools and knowledge become more advanced, we can discover more — sometimes new things that contradict what we thought we knew, sometimes nuances about old things. Sometimes we discover a whole area that we didn’t know about.

The rate of these discoveries varies. Our body of engineering knowledge changes more slowly, for example, than does our body of psychological knowledge.

Arbesman studied the nature of facts. The field was born in 1947, when mathematician Derek J. de Solla Price was arranging a set of philosophical books on his shelf. Price noted something surprising: the sizes of the books fit an exponential curve. His curiosity piqued, he began to see whether the same curve applied to science as a whole. Price established that the quantity of scientific data available was doubling every 15 years. This meant that some of the information had to be rendered obsolete with time.

Scientometrics shows us that facts are always changing, and much of what we know is (or soon will be) incorrect. Indeed, much of the available published research, however often it is cited, has never been reproduced and cannot be considered true. In a controversial paper entitled “Why Most Published Research Findings Are False,” John Ioannides covers the rampant nature of poor science. Many researchers are incentivized to find results that will please those giving them funding. Intense competition makes it essential to find new information, even if it is found in a dubious manner. Yet we all have a tendency to turn a blind eye when beliefs we hold dear are disproved and to pay attention only to information confirming our existing opinions.

As an example, Arbesman points to the number of chromosomes in a human cell. Up until 1965, 48 was the accepted number that medical students were taught. (In 1953, it had been declared an established fact by a leading cytologist). Yet in 1956, two researchers, Joe Hin Tjio and Albert Levan, made a bold assertion. They declared the true number to be 46. During their research, Tjio and Levan could never find the number of chromosomes they expected. Discussing the problem with their peers, they discovered they were not alone. Plenty of other researchers found themselves two chromosomes short of the expected 48. Many researchers even abandoned their work because of this perceived error. But Tjio and Levan were right (for now, anyway). Although an extra two chromosomes seems like a minor mistake, we don’t know the opportunity costs of the time researchers invested in faulty hypotheses or the value of the work that was abandoned. It was an emperor’s-new-clothes situation, and anyone counting 46 chromosomes assumed they were the ones making the error.

As Arbesman puts it, facts change incessantly. Many of us have seen the ironic (in hindsight) doctor-endorsed cigarette ads from the past. A glance at a newspaper will doubtless reveal that meat or butter or sugar has gone from deadly to saintly, or vice versa. We forget that laughable, erroneous beliefs people once held are not necessarily any different from those we now hold. The people who believed that the earth was the center of the universe, or that some animals appeared out of nowhere or that the earth was flat, were not stupid. They just believed facts that have since decayed. Arbesman gives the example of a dermatology test that had the same question two years running, with a different answer each time. This is unsurprising considering the speed at which our world is changing.

As Arbesman points out, in the last century the world’s population has…

More from Around the Web

Subscribe To Our Newsletter

Join our mailing list to receive the latest news from our network of site partners.

You have Successfully Subscribed!

Pin It on Pinterest