The inside of a proton endures more pressure than anything else we’ve seen

illustration of quarks
FEELING THE PRESSURE Extreme pressures are found within the proton, scientists report. The proton contains three particles called quarks (illustrated) and gluons, which hold the particle together.

Pity the protons: Those little particles are under a lot of pressure. Protons’ innards are squeezed harder than any other substance we have measured, a new study finds.

“It’s really the highest pressure we have ever seen,” says physicist Volker Burkert, a coauthor of the study, published in the May 17 Nature. Protons break the pressure record set by neutron stars, the incredibly dense dead stars that can form when a massive star explodes and its core collapses, squeezing more mass than the sun’s into a remnant the size of a city.

The pressure in the proton’s center averages a million trillion trillion times the strength of Earth’s atmospheric pressure, report Burkert and colleagues, from Thomas Jefferson National Accelerator Facility in Newport News, Va. That’s around 10 times the pressure found inside a neutron star. Previously, scientists had theoretically predicted that such pressures might occur inside protons, but the new result is the first experimental proton pressure gauge.

In proton research, the particle’s internal pressure distribution has been a largely unexplored frontier, even though pressure is one of the proton’s fundamental properties. “It’s as important as electric charge or mass,” says physicist Peter Schweitzer of the University of Connecticut in Storrs, but was unknown until now.

Follow Me


COO at oneQube
COO @oneqube | Angel Investor | Proud mom | Advisor @TheTutuProject | Let's Go #NYRangers
Follow Me

More from Around the Web

Subscribe To Our Newsletter

Join our mailing list to receive the latest news from our network of site partners.

You have Successfully Subscribed!

Pin It on Pinterest