DNA

Scientists Sequence Ancient Neandertal DNA From Cave Dirt

Medieval Cold Snap That Caused Famine And Death Reveals Danger Of Climate Change

An entrance to the archaeological site of Vindija Cave, Croatia where Neandertal DNA was found in the cave sediment.
An entrance to the archaeological site of Vindija Cave, Croatia where Neandertal DNA was found in the cave sediment.

J. Krause/ MPI

An entrance to the archaeological site of Vindija Cave, Croatia where Neandertal DNA was found in the cave sediment.

Need DNA? No body? No problem. New research in Science by an international team of researchers lead by Viviane Slon at the Max Planck Institute for Evolutionary Anthropology in Germany has shown a relatively straightforward way to sequence the DNA from of our hominin relatives without any of their skeletal remains, greatly expanding the horizons of ancient DNA research.

Extracting animal DNA from sources like sediment, dirt, and water is a roundabout way for scientists to detect hard-to-find species in certain environments, but new research has found this method is also applicable for detecting where hominins once lived thousands of years ago. Archaeological sites in Europe and Asia contain stone tools that were made by hominins like Neandertals, but often there is no trace of skeletal remains. Since…

Dog DNA study maps breeds across the world

dog breeds
With a new dataset, man digs into the genetic history of his best friend.

Mapping the relationships between different dog breeds is rough (get it?), but a team of scientists at the National Institutes of Health did just that using the DNA of 1,346 dogs from 161 breeds. Their analysis, which appears April 25 in Cell Reports, offers a lot to chew on.

Here are five key findings from the work:

Dogs were bred for specific jobs, and this shows in their genes.

As human lifestyles shifted from hunting and gathering to herding to agriculture and finally urbanization, humans bred dogs (Canis familiaris) accordingly. Then over the last 200 years, more and more breeds emerged within those categories. Humans crossed breeds to create hybrids based on appearance and temperament, and those hybrids eventually became new breeds.

DNA from hybrid dogs backs up historical records.

Genetic backtracking indicates that, for example, mixing between bulldogs and terriers traces back to Ireland…

Cells’ stunning complexity on display in a new online portal

3-D images of cells
VARIATIONS ON A CELL Although these stem cells are all genetically identical, they can adopt a variety of shapes. Here, the cells’ membranes are cyan, and DNA is colored magenta.

Computers don’t have eyes, but they could revolutionize the way scientists visualize cells.

Researchers at the Allen Institute for Cell Science in Seattle have devised 3-D representations of cells, compiled by computers learning where thousands of real cells tuck their component parts.

Most drawings of cells in textbooks come from human interpretations gleaned by looking at just a few dead cells at a time. The new Allen Cell Explorer, which premiered online April 5, presents 3-D images of genetically identical stem cells grown in lab dishes (composite, above), revealing a huge variety of structural differences.

Each cell comes from a skin cell that was reprogrammed into a stem cell. Important proteins were tagged with fluorescent molecules so researchers could keep tabs on the cell membrane, DNA-containing nucleus, energy-generating mitochondria, microtubules and other cell parts. Using the 3-D images, computer programs learned where the cellular parts are in relation to each other. From those rules, the programs can generate predictive transparent models of a cell’s structure (below). The new views, which can capture cells at different time points, may offer clues into their inner workings.

3-D view of a cell
Machine-learning programs…

CRISPR had a life before it became a gene-editing tool

phages
Bacteria and archaea armed with CRISPR systems have been at war with viruses for eons. Here, hordes of viruses known as phages assault a bacterium to turn it into a virus-making factory.

WEAPONS OF MASS EVOLUTION

It is the dazzling star of the biotech world: a powerful new tool that can deftly and precisely alter the structure of DNA. It promises cures for diseases, sturdier crops, malaria-resistant mosquitoes and more. Frenzy over the technique — known as CRISPR/Cas9 — is in full swing. Every week, new CRISPR findings are unfurled in scientific journals. In the courts, universities fight over patents. The media report on the breakthroughs as well as the ethics of this game changer almost daily.

But there is a less sequins-and-glitter side to CRISPR that’s just as alluring to anyone thirsty to understand the natural world. The biology behind CRISPR technology comes from a battle that has been raging for eons, out of sight and yet all around us (and on us, and in us).

The CRISPR editing tool has its origins in microbes — bacteria and archaea that live in obscene numbers everywhere from undersea vents to the snot in the human nose. For billions of years, these single-celled organisms have been at odds with the viruses — known as phages — that attack them, invaders so plentiful that a single drop of seawater can hold 10 million. And natural CRISPR systems (there are many) play a big part in this tussle. They act as gatekeepers, essentially cataloging viruses that get into cells. If a virus shows up again, the cell — and its offspring — can recognize and destroy it. Studying this system will teach biologists much about ecology, disease and the overall workings of life on Earth.

But moving from the simple, textbook story into real life is messy. In the few years since the defensive function of CRISPR systems was first appreciated, microbiologists have busied themselves collecting samples, conducting experiments and crunching reams of DNA data to try to understand what the systems do. From that has come much elegant physiology, a mass of complexity, surprises aplenty — and more than a little mystery.

Spoiled yogurt

The biology is complicated, and its basic nuts and bolts took some figuring out. There are two parts to CRISPR/Cas systems: the CRISPR bit and the Cas bit. The CRISPR bit — or “clustered regularly interspaced short palindromic repeats” — was stumbled on in the late 1980s and 1990s. Scientists then slowly pieced the story together by studying microbes that thrive in animals’ guts and in salt marshes, that cause the plague and that are used to make delicious yogurt and cheese.

None of the scientists knew what they were dealing with at first. They saw stretches of DNA with a characteristic pattern: short lengths of repeated sequence separated by other DNA sequences now known as spacers. Each spacer was unique. Because the roster of spacers could differ from one cell to the next in a given microbe species, an early realization was that these differences could be useful for forensic “typing” — investigators could tell whether food poisoning cases were linked, or if someone had stolen a company’s yogurt starter culture.

Bacteria use CRISPR/Cas as a form of immunity or self-defense against invaders. A bacterium builds a library of genetic material from past invaders so that, if the same invader attacks again, the bacterium and its offspring can disable it.

L. Marraffini/Nature 2015, Adapted by J. Hirshfeld

But curious findings piled up. Some of those spacers, it turned out, matched the DNA of phages. In a flurry of reports in 2005, scientists showed, to name one example, that strains of the lactic acid bacterium Streptococcus thermophilus contained spacers that matched genetic material of phages known to infect Streptococcus. And the more spacers a strain had, the more resistant it was to attack by phages.

This began to look a lot like learned or adaptive immunity, akin to our own antibody system: After exposure to a specific threat, your immune system remembers and you are thereafter resistant to that threat. In a classic experiment published in Science in 2007, researchers at the food company Danisco showed it was so. They could see new spacers added when a phage infected a culture of S. thermophilus. Afterward, the bacterium was immune to the phage. They could artificially engineer a phage spacer into the CRISPR DNA and see resistance emerge; when they took the spacer away, immunity was lost.

This was handy intel for an industry that could find whole vats of yogurt-making bacteria wiped out by phage infestations. It was an exciting time scientifically and commercially, says Rodolphe Barrangou of North Carolina State University in Raleigh, who did a lot of the Danisco work. “It was not just discovering a cool system, but also uncovering a powerful phage-resistance technology for the dairy industry,” he says.

The second part of the CRISPR/Cas system is the Cas bit: a set of genes located near the cluster of CRISPR spacers. The DNA sequences of these genes strongly suggested that they carried instructions for proteins that interact with DNA or RNA in some fashion — sticking to it, cutting it, copying it, unraveling it. When researchers inactivated one Cas gene or another, they saw immunity falter. Clearly, the two bits of the system — CRISPR and Cas — were a team.

It took many more experiments to get to today’s basic model of how CRISPR/Cas systems fight phages — and not just phages. Other types of foreign DNA can get into microbes, including circular rings called plasmids that shuttle from cell to cell and DNA pieces called transposable elements, which jump around within genomes. CRISPRs can fend off these intruders, as well as keep a microbe’s genome in tidy order.

The process works like this: A virus injects its genetic material into the cell. Sensing this danger, the cell selects a little strip of that genetic material and adds it to the spacers in the CRISPR cluster. This step, known as immunization or adaptation, creates a list of encounters a cell has had with viruses, plasmids or other foreign bits of DNA over time — neatly lined up in reverse chronological order, newest to oldest.

Older spacers eventually get shed, but a CRISPR cluster can grow to be long — the record holder to date is 587 spacers in Haliangium ochraceum, a salt-loving microbe isolated from a piece of seaweed. “It’s like looking at the last 600 shots you had in your arm,” says Barrangou. “Think about that.”

New spacer in place, the microbe is now immunized. Later comes targeting. If that same phage enters the cell again, it’s recognized. The cell has made RNA copies of the relevant spacer, which bind to the matching spot on the genome of the invading phage. That “guide RNA” leads Cas proteins to target and snip the phage DNA, defanging the intruder.

Scientists have divided the array of known CRISPR systems into five types and 16 subtypes based on DNA sequence data. The distribution of types differs in archaea and bacteria.

K.S. Makarova et al/Nat. Rev. Microbio. 2015, Adapted by J. Hirshfeld

Researchers now know there are a confetti-storm of different CRISPR systems, and the list continues to grow. Some are simple — such as the CRISPR/Cas9 system that’s been adapted for gene editing in more complex creatures (SN: 4/15/17, p. 16) — and some are elaborate, with many protein workhorses deployed to get the job done.

Those who are sleuthing the evolution of CRISPR systems are deciphering a complex story. The part of the CRISPR toolbox involved in immunity (adding spacers after phages inject their genetic material) seems to have originated from a specific type of transposable element called a casposon. But the part responsible for targeting has multiple origins — in some cases, it’s another type of transposable element. In others, it’s a mystery.

Given the power of CRISPR systems to ward off foes, one might think every respectable microbe out there in the soils, vents, lakes, guts and nostrils of this planet would have one. Not so.

Numbers are far from certain, partly because science hasn’t come close to identifying all the world’s microbes, let alone probe them all for CRISPRs. But the scads of microbial genetic data accrued so far throw up interesting trends.

Tallies suggest that CRISPR systems are far more prevalent in known archaea than in known bacteria — such systems exist in roughly 90 percent of archaea and about…