Drug

Anesthesia for youngsters is a tricky calculation

baby having surgery
Short, one-time bouts of anesthesia probably don’t cause lasting harm to children’s brains, several studies suggest. But scientists have a lot to learn about anesthetics’ lasting effects, particularly in the youngest patients.

If your young child is facing ear tubes, an MRI or even extensive dental work, you’ve probably got a lot of concerns. One of them may be about whether the drugs used to render your child briefly unconscious can permanently harm his brain. Here’s the frustrating answer: No one knows.

“It’s a tough conundrum for parents of kids who need procedures,” says pediatric anesthesiologist Mary Ellen McCann, a pediatric anesthesiologist at Boston Children’s Hospital. “Everything has risks and benefits,” but in this case, the decision to go ahead with surgery is made more difficult by an incomplete understanding of anesthesia’s risks for babies and young children. Some studies suggest that single, short exposures to anesthesia aren’t dangerous. Still, scientists and doctors say that we desperately need more data before we really understand what anesthesia does to developing brains.

It helps to know this nonanswer comes with a lot of baggage, a sign that a lot of very smart and committed people are trying to answer the question. In December, the FDA issued a drug safety communication about anesthetics that sounded alarming, beginning with a warning that “repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” FDA recommended more conversations between parents and doctors, in the hopes of delaying surgeries that can safely wait, and the amount of anesthesia exposure in this potentially vulnerable population.

The trouble with that statement, though, is that it raises concerns without answering them, says pediatric anesthesiologist Dean Andropoulos of Texas Children’s Hospital in Houston. And that concern might lead to worse outcomes for their youngest patients. “Until reassuring new information from well-designed clinical trials is available, we are concerned that the FDA…

An Epilepsy Drug May Have Treatment Potential for Migraines

The migraine—a common but debilitating brain disorder characterized by severe headaches, often with accompanying nausea and visual auras—has perplexed neurologists for decades. There are so many types of migraine, and each person’s physiology responds differently to the few drugs and treatments available.

In the hunt for an umbrella drug to treat all migraines, researchers at the University of British Colombia have investigated a potential new treatment for migraine with aura, which affects about one-third of migraine sufferers: pregabalin (brand name Lyrica). In a class of drugs called gabapentinoids, pregabalin is an anticonvulsant used to treat epilepsy, neuropathic pain, and fibromyalgia. The researchers published their results today in Proceedings of the National Academy of Sciences (PNAS).

Migraines begin in the brain before they’re ever visualized as an aura or felt as an intense headache. Researchers believe migraines are triggered by a brain pattern known as cortical spreading depression, or SD. Though triggers can be numerous, the SD starts in the brain as a “depolarization of neurons in a particular area of the brain,” Stuart Cain, lead author and a neurophysiologist at University of British Columbia, Vancouver tells mental_floss. “This causes a wave of excitation that travels across the brain.”

After the excitation period, there’s a long period of inactivity in which the neurons become stuck in this inactive state. “It’s this wave of inactivity that is actually causing spreading depression, and that causes the migraine aura,” he explains. Though the mechanisms are still not fully understood, they also believe this SD triggers the trigeminal nerve, one of the most widely distributed nerves in the head. That is what causes the headache pain.

As the SD travels slowly through the brain, it may go into the visual cortex and stimulate visual hallucinations, or even the auditory cortex, causing auditory hallucinations….