Helena Cronin

Competition, Cooperation, and the Selfish Gene

Richard Dawkins has one of the best-selling books of all time for a serious piece of scientific writing.

Often labeled “pop science”, The Selfish Gene pulls together the “gene-centered” view of evolution: It is not really individuals being selected for in the competition for life, but their genes. The individual bodies (phenotypes) are simply carrying out the instructions of the genes. This leads most people to a very “competition focused” view of life. But is that all?

***

More than 100 years before The Selfish Gene, Charles Darwin had famously outlined his Theory of Natural Selection in The Origin of Species.

We’re all hopefully familiar with this concept: Species evolve over long periods time through a process of heredity, variation, competition, and differential survival.

The mechanism of heredity was invisible to Darwin, but a series of scientists, not without a little argument, had figured it out by the 1970’s: Strands of the protein DNA (“genes”) encoded instructions for the building of physical structures. These genes were passed on to offspring in a particular way – the process of heredity. Advantageous genes were propagated in greater numbers. Disadvantageous genes, vice versa.

The Selfish Gene makes a particular kind of case: Specific gene variants grow in proportion to a gene pool by, on average, creating advantaged physical bodies and brains. The genes do their work through “phenotypes” – the physical representation of their information. As Helena Cronin would put in her book The Ant and the Peacock, “It is the net selective value of a gene’s phenotypic effect that determines the fate of the gene.”

This take of the evolutionary process became influential because of the range of hard-to-explain behavior that it illuminated.

Why do we see altruistic behavior? Because copies of genes are present throughout a population, not just in single individuals, and altruism can cause great advantages in those gene variants surviving and thriving. (In other words, genes that cause individuals to sacrifice themselves for other copies of those same genes will tend to thrive.)

Why do we see more altruistic behavior among family members? Because they are closely related, and share more genes!

Many problems seemed to be solved here, and the Selfish Gene model became one for all-time, worth having in your head.

However, buried in the logic of the gene-centered view of evolution is a statistical argument. Gene variants rapidly grow in proportion to the rest of the gene pool because they provide survival advantages in the average environment that the gene will experience over its existence. Thus, advantageous genes “selfishly” dominate their environment before long. It’s all about gene competition.

This has led many people, some biologists especially, to view evolution solely through the lens of competition. Unsurprisingly, this also led to some false paradigms about a strictly “dog eat dog” world where unrestricted and ruthless individual competition is deemed “natural”.

But what about cooperation?

***

The complex systems researcher Yaneer Bar-Yam argues that not only is the Selfish Gene a limiting concept biologically and possibly wrong mathematically (too complex to address here, but if you want to read about it, check out these pieces), but that there are more nuanced ways to understand the way competition and cooperation comfortably coexist. Not only that, but Bar-Yam argues that this has implications for optimal team formation.

In his book Making Things Work, Bar-Yam lays…