Lakes worldwide feel the heat from climate change

Lake Huron
Oceans aren’t the only bodies of water affected by climate change. Lake Huron (shown) and many lakes worldwide could experience ecological, recreational and economic impacts from warming.


About 40 kilometers off Michigan’s Keweenaw Peninsula, in the waters of Lake Superior, rises the stone lighthouse of Stannard Rock. Since 1882, it has warned sailors in Great Lakes shipping lanes away from a dangerous shoal. But today, Stannard Rock also helps scientists monitor another danger: climate change.

Since 2008, a meteorological station at the lighthouse has been measuring evaporation rates at Lake Superior. And while weather patterns can change from year to year, Lake Superior appears to be behaving in ways that, to scientists, indicate long-term climate change: Water temperatures are rising and evaporation is up, which leads to lower water levels in some seasons. That’s bad news for hydropower plants, navigators, property owners, commercial and recreational fishers and anyone who just enjoys the lake.

When most people think of the physical effects of climate change, they picture melting glaciers, shrinking sea ice or flooded coastal towns (SN: 4/16/16, p. 22). But observations like those at Stannard Rock are vaulting lakes into the vanguard of climate science. Year after year, lakes reflect the long-term changes of their environment in their physics, chemistry and biology. “They’re sentinels,” says John Lenters, a limnologist at the University of Wisconsin–Madison.

Story continues after image

Lake Tanganyika
Lake Tanganyika is a major food source for people throughout eastern Africa. Fish stocks are dwindling as water temperatures in the lake rise.


Globally, observations show that many lakes are heating up — but not all in the same way or with the same ecological consequences. In eastern Africa, Lake Tanganyika is warming relatively slowly, but its fish populations are plummeting, leaving people with less to eat. In the U.S. Upper Midwest, quicker-warming lakes are experiencing shifts in the relative abundance of fish species that support a billion-dollar-plus recreational industry. And at high global latitudes, cold lakes normally covered by ice in the winter are seeing less ice year after year — a change that could affect all parts of the food web, from algae to freshwater seals.

Understanding such changes is crucial for humans to adapt to the changes that are likely to come, limnologists say. Indeed, some northern lakes will probably release more methane into the air as temperatures rise — exacerbating the climate shift that is already under way.

Lake layers

Lakes and ponds cover about 4 percent of the land surface not already covered by glaciers. That may sound like a small fraction, but lakes play a key role in several planetary processes. Lakes cycle carbon between the water’s surface and the atmosphere. They give off heat-trapping gases such as
carbon dioxide and methane, while simultaneously tucking away carbon in decaying layers of organic muck at lake bottoms. They bury nearly half as much carbon as the oceans do.

Yet the world’s more than 100 million lakes are often overlooked in climate simulations. That’s surprising, because lakes are far easier to measure than oceans. Because lakes are relatively small, scientists can go out in boats or set out buoys to survey temperature, salinity and other factors at different depths and in different seasons.

A landmark study published in 2015 aimed to synthesize these in-water measurements with satellite observations for 235 lakes worldwide. In theory, lake warming is a simple process: The hotter the air above a lake, the hotter the waters get. But the picture is far more complicated than that, the international team of researchers found.

Story continues after map

A recent survey of 235 lakes worldwide found that from 1985 to 2009 most warmed (red dots) while several cooled (blue).


On average, the 235 lakes in the study warmed at a rate of 0.34 degrees Celsius per decade between 1985 and 2009. Some warmed much faster, like Finland’s Lake Lappajärvi, which soared nearly 0.9 degrees each decade. A few even cooled, such as Blue Cypress Lake in Florida. Puzzlingly, there was no clear trend in which lakes warmed and which cooled. The most rapidly warming lakes were scattered across different latitudes and elevations.

Even some that were nearly side by side warmed at different rates from one another — Lake Superior, by far the largest of the Great Lakes, is warming much more rapidly, at a full degree per decade, than others in the chain, although Huron and Michigan are also warming fast.

“Even though lakes are experiencing the same weather, they are responding in different ways,” says Stephanie Hampton, an aquatic biologist at Washington State University in Pullman.

Such variability makes it hard to pin down what to expect in the future. But researchers are starting to explore factors such as lake depth and lake size (intuitively, it’s less teeth-chattering to swim in a small pond in early summer than a big lake).

Depth and size play into stratification, the process through which some lakes separate into layers of different temperatures. Freshwater is densest at 4° C, just above freezing. In spring, using the Great Lakes as an example, the cold surface waters begin to warm; when they reach 4°, they become dense enough to sink. The lake’s waters mix freely and become much the same temperature at all depths.

Some lakes stratify twice a year, separating into
layers of different temperatures. Surface waters become warm enough (in spring) or cool enough (in autumn) to reach 4° Celsius, the temperature at which these waters become dense and sink toward the lake’s bottom, mixing the waters. In summer and winter, the layers separate. Lake Superior is stratifying earlier each year, giving its surface waters more time to heat up in summer, contributing to its long-term warming.

But then, throughout the summer, the upper waters heat up relatively quickly. The lake stops mixing and instead separates into layers, with warm water on top and cold, dense water at the bottom. It stays that way until autumn, when chilly air temperatures cool the surface waters to 4°. The newly dense waters sink again, mixing the lake for the second time of the year.

Lake Superior is warming so quickly because it is stratifying earlier and earlier each year. It used to separate into its summer layers during mid- to late July, on average. But rising air temperatures mean that it is now stratifying about a month earlier — giving the shallow surface layers much more time to get toasty each summer. “If you hit that starting point in June, now you’ve got all summer to warm up that top layer,” Lenters says.

Deep lakes warm very slowly in the spring, and small changes in water temperature at the end of winter can lead to large changes in the timing of summer stratification for these lakes. Superior is about 406 meters deep at its greatest point, so it is particularly vulnerable to such shifts.

In contrast, shallow lakes warm much more quickly in the spring, so the…

Antarctica Is Covered in Rivers, Lakes, and Waterfalls. That Might Not Be Good.

The floating ice shelves that buttress Antarctica are less icy than we thought, it turns out. They’re filled with flowing water. New research published in the scientific journal Nature maps the extensive network of meltwater from Antarctica’s ice sheets and found that, contrary to previous understanding, lakes and rivers—even waterfalls—created by melting have been common for at least seven decades.

Two new papers analyze satellite imagery of Antarctica dating back to 1973 and aerial photography dating back to 1947 for evidence of meltwater. Warming oceans melt ice shelves around from the bottom up, while warming air temperatures melt them from the top down, creating pools and rivers of liquid water on the continent’s surface.

Researchers found that over the last 70 years, a system of meltwater drainage has transported water from the continent of Antarctica across the floating ice shelves that surround it, traveling up to 75 miles and creating ponds up to 50 miles long.

This isn’t great news for the stability of the ice shelf. Water is heavy, and the weight can cause the ice below these lakes to crack. As…

Invasive species, climate change threaten Great Lakes

zebra mussels
BAD NEIGHBORS Zebra mussels (shown) and other invasive species are just one of many threats to the Great Lakes’ ecosystems, as detailed in a new book.

The Death and Life of the Great Lakes
Dan Egan
W.W. Norton & Co., $27.95

Every summer, people flock to the Great Lakes to swim and fish in the seemingly infinite waters and hike along the idyllic shores. But an ominous undercurrent flows just out of sight. Below the water’s surface rages an environmental catastrophe 200 years in the making.

In The Death and Life of the Great Lakes, journalist Dan Egan describes how the lakes’ natural history gave way to an unnatural one. From the effects of global trade and urbanization to climate change, the book offers an exhaustive (and sometimes exhausting) account of the abuses the lakes have endured.

Scars left by retreating glaciers and a failed continental rift, lakes Huron, Ontario, Michigan, Erie and Superior are more like inland seas, holding about 20 percent of Earth’s surface freshwater. The lakes were mostly isolated…