Patient

Engaging in These 8 Mindfulness Practices Daily Decreased HIV Patients’ Viral Loads

Article Image

Mindfulness meditation has been practiced in East Asia for thousands of years. In the 1960s and 70s, interest in it brought this Zen staple to the US and Europe. It was common within the counterculture movement and continued over the decades among “crunchy granola” and “New Age” types. Since, several studies have shown remarkable health benefits gained by those engaging in such meditation.

Renowned Zen master Thich Nhat Hanh calls mindfulness “present-focused awareness.” This is clearing one’s mind of all the chatter, what Buddhists call the “monkey mind,” as well as any thoughts of the past or future. In reality they don’t exist. All that is real is the omnipresent now.

Time unfolds moment to moment. So we must live fully in the now to truly be free and at one with nature and our place within it. Mindfulness is therefore recognizing everything that is before you with a sharpened focus. In a way, this is jettisoning worry and instead, embracing wonder and gratitude for the rich sensual tapestry unfolding at each moment in one’s life.

Today lawyers, tech professionals, and executives at some of the top companies in the world including: Goldman Sachs, Aetna, Google, Bank of American, and Salesforce, all practice mindfulness. Studies have shown that it increases focus, memory, and may even improve cognition.

One surprising find, it alters attitudes, even the ones we don’t consider malleable. A 2015 study out of Central Michigan University, found that regularly practicing mindfulness reduces implicit ageism and racial bias.

English Bobbie meditating.

People from all walks of life practice mindfulness medication. Getty Images.

Engaging in mindfulness reduces stress. Chronic stress elevates the hormone cortisol in the bloodstream, which in turn raises our blood pressure, increases our awareness of pain, weakens our immune system, and causes chronic inflammation—implicated in a whole host of conditions including heart disease, cancer, and diabetes.

Such meditation can also save you from wrinkles and gray hair. Practicing regularly has been proven to lengthen the telomerase or “caps” at the end of chromosomes. By doing so, cell damage is reduced and the aging process, slowed.

A Blood Test May Help Pinpoint the Right Antidepressant for You

When doctors determine the best medication for a person with depression, they generally rely upon little more than guesswork and patient self-reports, due to insufficient medical evidence. Research out of UT Southwestern Medical Center (UTSMC) previously suggested that such practices were insufficient, and a new study, published in Psychoneuroendocrinology, provides additional diagnostic information that may change the way depression is treated.

The research team drew upon a large body of research that links low levels of inflammation in the body with depression. They say a blood test for an inflammatory biomarker, known as C-reactive protein (CRP), can significantly improve the success rate of two common antidepressants for depressed patients.

Lead author Madhukar Trivedi, a professor of psychiatry at UTSMC and director of the Center for Depression Research and Clinical Care, says doctors typically pick an antidepressant for their patients in one of three ways: personal experience; matching the perceived benefits of one drug with a certain type of patient’s needs; or having the patient pick a drug by ruling out the unwanted side effects of other drugs. “There isn’t a strong evidence base to support one way [of choosing an antidepressant] over another,” he tells mental_floss.

Trivedi says that because many doctors are pressed for time and overloaded with patients, they don’t thoroughly address a depressed patient’s needs. “If you have diabetes, the doctor spends a lot of time explaining that it’s a serious illness—there are consequences for ignoring it, and there are treatments you need to do. In depression, that does not happen as much. Patient engagement is not that strong,” he says.

Trivedi led a landmark study more than a decade ago that revealed how serious the medication problem is: Up to one-third of depressed patients don’t see an improvement in their first month of medication,…

Cool Jobs: Doing real science in virtual worlds

virtual reality
virtual reality

Strap on a virtual reality headset and you’ll enter a different world. Without leaving your house, you can fly a spaceship through a make-believe galaxy. You can play pool with friends. Or you can perform surgery on an alien.

Virtual reality, or VR, uses special technology to trick the brain into thinking these experiences are real. A technique called stereoscopy (STAIR-ee-OSS-kuh-pee) sends a slightly different image to each eye. This can create the illusion of depth. It certainly makes video games feel more realistic. But VR isn’t just for fun. It also can help scientists do their research or share it with others.

Scientists are using VR to learn more about people and the planet. One engineer uses this technology to let kids build mountains and carve out rivers with their bare hands. A scientist who studies language puts people in a virtual restaurant to learn what happens in their brains as they converse. A doctor takes patients on a virtual field trip to swim with dolphins. The worlds they visit are not real, but the science is.

Decoding dialogue

David Peeters loved learning foreign languages when he was growing up. His first language was Dutch. He studied three others at school — German, French and English.

In college and graduate school he focused on linguistics. It’s the science of human language. And the more he learned, the more Peeters began to wonder what happens inside our brains as people converse. He began to look at language through the lens of neuroscience — the study of the brain.

“There’s a lot about the way the brain processes speech that we don’t understand,” he says. Peeters is a scientist at the Max Planck Institute for Psycholinguistics in Nijmegen (Nih-MAY-jin), a city in the Netherlands. Peeters studies the way people communicate. To answer some of his questions, he built a virtual restaurant.

Real people stroll into it. To do this, they wear 3-D glasses. The small room they walk in has screens on every wall. It’s called a cave automatic virtual environment — CAVE for short. It’s basically a theater with a 3-D movie projected on every wall. To someone wearing 3-D glasses, it feels almost like a real world. (For people familiar with Star Trek: Next Generation, CAVEs are essentially a real-life version of the holodeck.)

Story continues below image.

Virtual restaurant
This restaurant isn’t real, but it’s helping linguist David Peeters study language. He observes what happens in the brain as real people talk to virtual diners in this digital eatery.

The screens show scenes inside the virtual restaurant. Each person who takes part in the study “becomes” a waiter or waitress through an avatar. That avatar is a make-believe character. It can be moved around and used to talk to others in a virtual world. Participants move their avatar simply by walking around the CAVE.

Peeters wants to find out what happens in people’s brains as they speak with virtual restaurant customers through their avatar. He does this by having each person wear a cap covered in electrodes.

These small sensors on wires attach to the outside of the head. Cells in the brain communicate with each other by sending tiny zaps of electricity back and forth. Electrodes listen for these electrical impulses and then report them to a computer. The computer records this brain activity as a set of wavy lines called an EEG. That’s short for electroencephalogram (Ee-LEK-troh-en-SEFF-uh-low-gram).

Peeters uses the EEG data to see which parts of the brain are most active during a conversation. This gives him clues about how the brain processes or understands different patterns of speech.

For example, there are direct and indirect ways to say something. “Please bring me another soup” is a very direct way to communicate a need, Peeters points out. But a lot of our conversations are indirect. In the virtual restaurant, a customer may simply say, “My soup is cold.”

“We understand this means the customer wants another soup, even though they didn’t ask for it,” says Peeters. That’s indirect language.

Peeters studies the differences in brain activity when a person hears direct versus indirect speech patterns. He hopes such research will one day help scientists better understand disorders such as autism. That’s a condition in which people have a hard time processing speech and communicating.

A new way to relax

For many years, Wim Veling used VR to help patients overcome phobias, or fears. As a psychiatrist, he treats patients with mental-health disorders. Veling works at the University of Groningen in the Netherlands.

A person with a fear…

Cool Jobs: Doing real science in virtual worlds

virtual reality
virtual reality

Strap on a virtual reality headset and you’ll enter a different world. Without leaving your house, you can fly a spaceship through a make-believe galaxy. You can play pool with friends. Or you can perform surgery on an alien.

Virtual reality, or VR, uses special technology to trick the brain into thinking these experiences are real. A technique called stereoscopy (STAIR-ee-OSS-kuh-pee) sends a slightly different image to each eye. This can create the illusion of depth. It certainly makes video games feel more realistic. But VR isn’t just for fun. It also can help scientists do their research or share it with others.

Scientists are using VR to learn more about people and the planet. One engineer uses this technology to let kids build mountains and carve out rivers with their bare hands. A scientist who studies language puts people in a virtual restaurant to learn what happens in their brains as they converse. A doctor takes patients on a virtual field trip to swim with dolphins. The worlds they visit are not real, but the science is.

Decoding dialogue

David Peeters loved learning foreign languages when he was growing up. His first language was Dutch. He studied three others at school — German, French and English.

In college and graduate school he focused on linguistics. It’s the science of human language. And the more he learned, the more Peeters began to wonder what happens inside our brains as people converse. He began to look at language through the lens of neuroscience — the study of the brain.

“There’s a lot about the way the brain processes speech that we don’t understand,” he says. Peeters is a scientist at the Max Planck Institute for Psycholinguistics in Nijmegen (Nih-MAY-jin), a city in the Netherlands. Peeters studies the way people communicate. To answer some of his questions, he built a virtual restaurant.

Real people stroll into it. To do this, they wear 3-D glasses. The small room they walk in has screens on every wall. It’s called a cave automatic virtual environment — CAVE for short. It’s basically a theater with a 3-D movie projected on every wall. To someone wearing 3-D glasses, it feels almost like a real world. (For people familiar with Star Trek: Next Generation, CAVEs are essentially a real-life version of the holodeck.)

Story continues below image.

Virtual restaurant
This restaurant isn’t real, but it’s helping linguist David Peeters study language. He observes what happens in the brain as real people talk to virtual diners in this digital eatery.

The screens show scenes inside the virtual restaurant. Each person who takes part in the study “becomes” a waiter or waitress through an avatar. That avatar is a make-believe character. It can be moved around and used to talk to others in a virtual world. Participants move their avatar simply by walking around the CAVE.

Peeters wants to find out what happens in people’s brains as they speak with virtual restaurant customers through their avatar. He does this by having each person wear a cap covered in electrodes.

These small sensors on wires attach to the outside of the head. Cells in the brain communicate with each other by sending tiny zaps of electricity back and forth. Electrodes listen for these electrical impulses and then report them to a computer. The computer records this brain activity as a set of wavy lines called an EEG. That’s short for electroencephalogram (Ee-LEK-troh-en-SEFF-uh-low-gram).

Peeters uses the EEG data to see which parts of the brain are most active during a conversation. This gives him clues about how the brain processes or understands different patterns of speech.

For example, there are direct and indirect ways to say something. “Please bring me another soup” is a very direct way to communicate a need, Peeters points out. But a lot of our conversations are indirect. In the virtual restaurant, a customer may simply say, “My soup is cold.”

“We understand this means the customer wants another soup, even though they didn’t ask for it,” says Peeters. That’s indirect language.

Peeters studies the differences in brain activity when a person hears direct versus indirect speech patterns. He hopes such research will one day help scientists better understand disorders such as autism. That’s a condition in which people have a hard time processing speech and communicating.

A new way to relax

For many years, Wim Veling used VR to help patients overcome phobias, or fears. As a psychiatrist, he treats patients with mental-health disorders. Veling works at the University of Groningen in the Netherlands.

A person with a fear…

Anesthesia for youngsters is a tricky calculation

baby having surgery
Short, one-time bouts of anesthesia probably don’t cause lasting harm to children’s brains, several studies suggest. But scientists have a lot to learn about anesthetics’ lasting effects, particularly in the youngest patients.

If your young child is facing ear tubes, an MRI or even extensive dental work, you’ve probably got a lot of concerns. One of them may be about whether the drugs used to render your child briefly unconscious can permanently harm his brain. Here’s the frustrating answer: No one knows.

“It’s a tough conundrum for parents of kids who need procedures,” says pediatric anesthesiologist Mary Ellen McCann, a pediatric anesthesiologist at Boston Children’s Hospital. “Everything has risks and benefits,” but in this case, the decision to go ahead with surgery is made more difficult by an incomplete understanding of anesthesia’s risks for babies and young children. Some studies suggest that single, short exposures to anesthesia aren’t dangerous. Still, scientists and doctors say that we desperately need more data before we really understand what anesthesia does to developing brains.

It helps to know this nonanswer comes with a lot of baggage, a sign that a lot of very smart and committed people are trying to answer the question. In December, the FDA issued a drug safety communication about anesthetics that sounded alarming, beginning with a warning that “repeated or lengthy use of general anesthetic and sedation drugs during surgeries or procedures in children younger than 3 years or in pregnant women during their third trimester may affect the development of children’s brains.” FDA recommended more conversations between parents and doctors, in the hopes of delaying surgeries that can safely wait, and the amount of anesthesia exposure in this potentially vulnerable population.

The trouble with that statement, though, is that it raises concerns without answering them, says pediatric anesthesiologist Dean Andropoulos of Texas Children’s Hospital in Houston. And that concern might lead to worse outcomes for their youngest patients. “Until reassuring new information from well-designed clinical trials is available, we are concerned that the FDA…

For Ebola patients, a few signs mean treatment’s needed — stat

Ebola scorecard
EBOLA BY THE NUMBERS Looking at some key risk factors may help healthcare workers triage Ebola patients.

A new scorecard may help doctors quickly decide who needs additional care to survive Ebola.

In the latest outbreak, which raged in Guinea, Liberia and Sierra Leone from 2014 to 2016, 28,616 people were infected with virus and 11,310 people died. Doctors might be able to improve the odds of surviving by looking for a few warning signs in people who need to be treated more intensively, Mary-Anne Hartley, of the international charity GOAL Global and the University of Lausanne in Switzerland, and colleagues report February 2 in PLOS Neglected Tropical Diseases.

“It can be very difficult to avoid bias when choosing which Ebola patient should be given extra care when you have limited time and resources,” Hartley says. “Should it…

Gastric bypass controls diabetes long term better than other methods

gastric bypass
STOMACH SURGERY Gastric bypass surgery reduces the size of the stomach and shortens the digestive path for food. While performed for weight loss, the procedure may also bring long-term remission of diabetes.

People who undergo gastric bypass surgery are more likely to experience a remission of their diabetes than patients who receive a gastric sleeve or intensive management of diet and exercise, according to a new study. Bypass surgery had already shown better results for diabetes than other weight-loss methods in the short term, but the new research followed patients for five years.

“We knew that surgery had a powerful effect on diabetes,” says Philip Schauer of the Bariatric & Metabolic Institute at the Cleveland Clinic. “What this study says is that the effect of surgery is durable.” The results were published online February 15 in the New England Journal of Medicine.

The study followed 134 people with type 2 diabetes for five years in a head-to-head comparison of weight-loss methods. At the end of that time, two of 38 patients who only followed intensive diet and exercise plans were no longer in need of insulin to manage blood sugar levels. For comparison, 11 of 47 patients who had a gastric sleeve, which reduces the size of the stomach, and 14 of 49 who underwent gastric bypass, a procedure that…