Plastic

5 Labs That Use 3D Printing for Biohacking Projects

The greatest bridge between the world of makers and the world of biohackers is probably the mighty 3D printer. The main difference is instead of using plastics, they’re using biomaterials to build three-dimensional structures, and using special bioinks made of living cells to print messages and patterns.

Human cells cultured into a decellularized apple slice (left) and an apple carved into an ear shape (right) from Pelling Labs. Photo by Bonnie Findley

How BioCurious Started Bioprinting

Read articles from the magazine right here on

BioCurious is a mandatory stop among biohacker communities in North America. This pioneering space, located in Sunnyvale, California, hosts a number of great people collaborating on the DIY BioPrinter project. Their bioprinting adventure started in 2012, when they had their first meetups. According to Patrik D’haeseleer, who is leading the project with Maria Chavez, they were looking for community projects that could bring new people into the space and let them quickly collaborate. None of the project leaders had a specific bioprinting application in mind, nor did they have previous knowledge on how to build this kind of printer. Still, it appeared to be a fairly approachable technology that people could play with.

“You can just take a commercial inkjet printer. Take the inkjet cartridges and cut off the top essentially. Empty out the ink and put something else in there. Now you can start printing with that,” D’haeseleer explains.

The BioCurious group started by printing on big coffee filters, substituting ink with arabinose, which is a natural plant sugar. Then they put the filter paper on top of a culture of E. coli bacteria genetically modified to produce a green fluorescent protein in the presence of arabinose. The cells started to glow exactly where arabinose was printed.

Modifying commercial printers for this, as they were doing, presented challenges. “You may need to reverse engineer the printer driver or disassemble the paper handling machinery in order to be able to do what you want,” says D’haeseleer.

First major success with BioCurious’ $150 DIY BioPrinter: fluorescent E. coli printed on agar with an inkjet printhead. Photo by Patrik Dʼhaeseleer

So the group decided to build their own bioprinter from scratch. Their second version uses stepper motors from CD drives, an inkjet cartridge as a print head, and an open source Arduino shield to drive it — a DIY bioprinter for just $150 that you can find on Instructables.

The next and still current challenge deals with the consistency of the ink. Commercial cartridges work with ink that is pretty watery. But bioink requires a more gel-like material with high viscosity. The DIY BioPrinter group has been experimenting with different syringe pump designs that could allow them to inject small amounts of viscous liquid through the “bio print head.”

BioCurious’ early printer: $11 syringe pumps mounted on a platform made from DVD drives. Photo by Patrik Dʼhaeseleer

Moving to 3D

Starting with an already existing 3D platform seemed like the best way to go beyond 2D patterns. The group first tried to modify their existing 3D printer by adding a bio print head directly on it. However, their commercial machine required some difficult reverse engineering and software modification to perfect the process. After a couple of months, this led to a dead end.

The RepRap family of 3D printers influenced the next step. After buying an affordable open source printer kit, the bioprinting team was able to switch out the plastic extruding print head for a print head with flexible tubes that connected to a set of stationary syringe pumps. It worked.

Converting a RepRap into BioCurious’ latest 3D BioPrinter platform, with an Open…

Filament Friday: Refil ABS Is Recycled Plastic for More Sustainable Prints

A major complaint leveraged against 3D printing is the creation of additional plastic waste that is quickly filling the world’s waterways. Most filament on the market is created from new, first-use polymers, but the team at Refil is working to combat that with their line of recycled plastic filament — creating little to no extra plastic waste.

A good friend of mine called me up to let me know he was helping out with 3D Brooklyn (who have recently been creating downloadable models for the History channel’s Vikings TV show) and that he thought I should check out the new filament they were bringing to the US market. He sent me a spool of the Refil ABS, a filament made from 100% recycled car parts, with no virgin plastic used. While you may not get the color options found in new plastics (Refil ABS only comes in black) you will have the peace of mind knowing that you are not contributing to the pollution problem as much as using new plastic.

Using the Refil ABS made me remember how much I love printing in ABS. It was not that long ago that ABS was the dominant 3D printing material and PLA was experimental. ABS…

Timberland Is Making Shoes and Bags From Recycled Plastic Bottles

Americans go through about 50 billion water bottles a year, but only recycle a fraction of that colossal total. Now, more companies and organizations are looking for creative ways to repurpose the waste that hydration leaves behind. Possibly taking cues from Adidas, Timberland has started making its own environmentally-conscious footwear.

The shoe company has partnered with Pennsylvania-based manufacturer Thread (and their Ground to Good fabric) to transform used water bottles into wearable shoes, bags, and shirts. The Timberland x Thread collaboration is taking bottles from the streets and landfills of Haiti in an effort to promote sustainability and…

Can Pine Needles Be Used to Create Sustainable Plastic

A team of scientists at the University of Bath in England is looking to pine trees to make the world’s plastic a little bit greener. As Seeker reports, the researchers have developed a way to swap the nonrenewable crude oil used in plastic production with a waste product derived from pine needles.

Pinene is the chemical compound that gives pine trees their unmistakable fragrance, and it’s also a common byproduct of the paper-making process. Instead of allowing the resource to go to waste, the University of Bath chemists lay out how it can be…