Stellar atmosphere

Sea creatures’ sticky ‘mucus houses’ catch ocean carbon really fast

larvacean
MUCUS HOUSE The pale inner house (rounded flank in foreground) as well as a big, stickier outer envelope of a larvacean’s shelter could be important in ocean carbon cycles.

Never underestimate the value of a disposable mucus house.

Filmy, see-through envelopes of mucus, called “houses,” get discarded daily by the largest of the sea creatures that exude them. The old houses, often more than a meter across, sink toward the ocean bottom carrying with them plankton and other biological tidbits snagged in their goo.

Now, scientists have finally caught the biggest of these soft and fragile houses in action, filtering particles out of seawater for the animal to eat. The observations, courtesy of a new deepwater laser-and-camera system, could start to clarify a missing piece of biological roles in sequestering carbon in the deep ocean, researchers say May 3 in Science Advances.

The houses come from sea animals called larvaceans, not exactly a household name. Their bodies are diaphanous commas afloat in the oceans: a blob of a head attached to a long tail that swishes water through its house. From millimeter-scale dots in surface waters to relative giants in the depths, larvaceans have jellyfish-translucent bodies but a cordlike structure (called a notochord) reminiscent of very ancient ancestors of vertebrates. “They’re more closely related to us than to jellyfish,” says bioengineer Kakani Katija of the Monterey Bay Aquarium Research Institute in Moss Landing, Calif.

The giants among larvaceans, with bodies in the size range of candy bars, don’t form their larger, enveloping houses when brought into the lab. So Katija and colleagues took a standard engineering strategy of tracking particle movement to measure flow rates…

Read up on solar eclipses before this year’s big event

Solar Eclipse in 2012
SUN BLOCK A total solar eclipse (one shown from 2012) is one of nature’s most awesome spectacles. In advance of one that will sweep across the United States in August, publishers are releasing a spate of new solar eclipse books.

In August, the United States will experience its first coast-to-coast total solar eclipse in nearly a century. Over the course of an hour and a half, the moon’s narrow shadow will slice across 12 states, from Oregon to South Carolina (SN: 8/20/16, p. 14). As many as 200 million people are expected to travel to spots where they can view the spectacle, in what could become one of the most watched eclipses in history. Excitement is building, hence the flurry of new books about the science, history and cultural significance of what is arguably one of Earth’s most awesome celestial phenomena.

Total solar eclipses happen when the moon passes in front of the sun as seen from Earth, and the moon blocks the entire face of the sun. This event also blocks sunlight that would otherwise scatter off the molecules in our atmosphere, reducing a source of glare and so allowing an unfettered view of the sun’s outer atmosphere, or corona. Total solar eclipses arise from a fluke of geometry that occurs nowhere else in the solar system, astronomer Anthony Aveni explains in In the Shadow of the Moon. Only Earth has a moon that appears, from the planet’s viewpoint, to fit so neatly over the sun — a consequence of the fact that the sun is a whopping 400 times as large as the moon but also 400 times farther away. Moons orbiting other planets are either too small to fully cover the sun’s face or are so large that they fully block any view of the corona.

In fact, the fluke of geometry is also a fluke of history: Because the moon’s orbit drifts about four centimeters farther from Earth each year, there will come a time when the moon will no longer appear to cover the sun, notes planetary scientist John Dvorak in Mask of the Sun. We already get a preview of that distant day: When the moon…