Therapy

Optimism Is a Skill That Can Be Learned

Article Image

The health benefits to being an optimist are well established and substantial. Having a positive mental attitude can help you lead a more stable, less stressful emotional life, have stronger coping strategies and better health, with quicker recovery time from illnesses and lower mortality rates.

Optimists are also more well liked socially (at least in American society) and are better at initiating and maintaining interpersonal relationships.

So if being an optimist is so good for you, can avowed pessimists—people who don’t feel too peachy about the future—change their outlook?

This article is part of The Hope and Optimism initiative. Explore the theoretical, empirical, and practical dimensions of hope, optimism, and related states: — Why Hopefulness Is a Greater Predictor of Academic Success than Intelligence

In a 2010 paper, the seminal positive psychologist Michael Scheier concludes that several behavioral therapies that can individuals transition to having a more optimistic viewpoint. The therapies work by getting people out of negative thinking patterns, especially patterns that prevent them from reaching their objectives.

“The logic behind these techniques is that people sometimes have patterns of negative cognitive distortions. Certain kinds of negative thoughts foster negative affect and lead people to stop trying to reach their goals. We would imagine the interior monologue of the pessimist is filled with such negativity. This class of therapies aims to make the cognitions more positive, thereby reducing distress and fostering renewed effort toward desired ends,” write the researchers.

The Science of Optimism: How Your Outlook Predicts Your Lifespan William Magee

Play Video

Play

Mute

Current Time 0:00

/

Duration Time 0:00

Loaded: 0%

Progress: 0%

Stream TypeLIVE

Remaining Time -0:00

Playback Rate

1

  • Chapters

Chapters

  • descriptions off, selected

Descriptions

  • subtitles off, selected

Subtitles

  • captions settings, opens captions settings dialog
  • captions off, selected

Captions

Audio Track

Fullscreen

This is a modal window.

Caption Settings Dialog

Beginning of dialog window. Escape will cancel and close the window.

TextColorWhiteBlackRedGreenBlueYellowMagentaCyanTransparencyOpaqueSemi-TransparentBackgroundColorBlackWhiteRedGreenBlueYellowMagentaCyanTransparencyOpaqueSemi-TransparentTransparentWindowColorBlackWhiteRedGreenBlueYellowMagentaCyanTransparencyTransparentSemi-TransparentOpaque

Font Size50%75%100%125%150%175%200%300%400%

Text Edge StyleNoneRaisedDepressedUniformDropshadow

Font FamilyProportional Sans-SerifMonospace Sans-SerifProportional SerifMonospace SerifCasualScriptSmall…

Infertile Couples Might Finally Be Able to Have Kids Thanks to 100-Year-old Technique

Prospective parents longing for kids of their own may no longer have to spend thousands of dollars on IVF treatments, thanks to this 100-year technique for inducing pregnancies.

This new study tested the effects of an old medical treatment for increasing women’s fertility. The treatment, which involves flushing the fallopian tubes with an iodized poppy seed oil, actually revealed surprisingly positive results.

The experiment was conducted across 27 medical centers in the Netherlands and Australia with 1,119 infertile women. Half of the women were given water-based solutions to use on their systems, while the other half was given the oil-based solution. Scientists found that 40% of women who underwent the oil-based procedure became pregnant within the first six months of treatment, as opposed to only 29% in the water-based group.

CHECK OUT: Thousands of Indian Doctors Fight Sexism by Delivering Baby Girls For Free

“It was long believed that testing a woman’s fallopian…

How Do Tics Develop in Tourette Syndrome?

Tourette syndrome is a brain dysfunction that leads to involuntary motor tics, such as sniffing, blinking, or clapping. In about 10 percent of cases, it also leads to the spontaneous utterance of taboo words or phrases, known as coprolalia. Until recently, these tics were believed to be the result of a dysfunction primarily in a brain structure known as the basal ganglia—a brain region associated with voluntary motor control, which primarily uses the neurotransmitter gamma-aminobutyric acid (GABA) to function. Recent studies of rat, monkey, and even human brains, however, has suggested that the tics stem from a more complex, system-level dysfunction that involves the cerebellum, the thalamus, and the cortex, which are all connected.

To better explore these brain regions and their influence on Tourette syndrome, Daniele Caligiore, a researcher at the Institute of Cognitive Sciences and Technologies of the Italian National Research Council in Italy, and his colleagues created a computer-simulated model of the neural activity of a brain with Tourette syndrome. The results are published in PLOS Computational Biology.

“The model presented here is a first step of a research agenda aiming at building virtual patients, allowing us to test potential therapies by using computer simulations,” Caligiore tells mental_floss. This method can be performed at low cost, without ethical implications, and, he hopes, help develop “more effective therapeutic protocols, and suggest promising therapeutic interventions.”

Using a…

New Therapy Shrinks Five Types of Pediatric Cancers in Mice

Cancerous pediatric brain tumors are some of the most aggressive cancers to affect children, and are frequently fatal. They’re difficult to treat due to their proximity to sensitive brain tissue in tiny brains, and children’s bodies can rarely tolerate the side effects of the levels of chemotherapy and radiation necessary to shrink tumors.

But recently, researchers at Stanford Medicine, the Lucile Packard Children’s Hospital, and several other institutions successfully tested a promising immunotherapy treatment that shrank multiple tumor types in mouse models. Immunotherapy treatments harness the body’s own immune system to fight the cancer, and usually come with few to no side effects compared to chemotherapy drugs and radiation.

The collaborative study, published in Science Translational Medicine, showed results on the five most common types of pediatric tumors: Group 3 medulloblastomas (MB), atypical teratoid rhabdoid tumors (ATRT), primitive neuroectodermal tumors (PNET), pediatric glioblastoma (PG), and diffuse intrinsic pontine glioma (DIPG).

The Stanford researchers designed their study after the recent discovery of a molecule known as CD47, a protein expressed on the surface of all cells. CD47 sends a “don’t eat me” signal to the immune system’s macrophages—white blood cells whose job it is to destroy abnormal cells. “Think of the macrophages as the Pac-Man of the immune system,” Samuel Cheshier, lead study author and assistant professor of neurosurgery at Stanford Medicine, tells mental_floss.

Cancer cells have adapted to express high amounts of CD47, essentially fooling the immune system into not destroying their cells, which allows tumors to flourish. Cheshier and his team theorized that if they could block the CD47 signals on cancer cells, the macrophages would identify the cells on the cancerous tumors and eat them—without any toxicity to healthy cells. To do so, they used an antibody known as anti-CD47, which, as its name implies, blocks CD47 on the cancer from binding to a receptor on the macrophage called SIRP-alpha.

“It is this binding that tells the macrophage, ‘Don’t eat the tumor,’” he says. The anti-CD47 fits perfectly into the binding pocket where CD47 and SIRP-alpha interact, “like a jigsaw puzzle,” helping the macrophage correctly identify the tumor as something to be removed. “Anti-CD47 is the big power pill in Pac-Man that makes him able to eat the ghosts,” says Cheshier.

Even better, not only does…

9 Up-Close Scientific Images from the Wellcome Image Awards

Each year, the Wellcome Image Awards highlight some of the most fascinating scientific images from around the world, as chosen by a panel of experts from the fields of science communications and medicine. The awards go to photographers and researchers who create “informative, striking and technically excellent images that communicate significant aspects of healthcare and biomedical science,” according to the Wellcome Trust, a biomedical research charity based in the UK. Here are nine of this year’s winning images:

ZEBRAFISH EYE AND NEUROMASTS

Ingrid Lekk and Steve Wilson, University College London

In this 4-day-old zebrafish embryo, a certain gene expressed in the lens of the eye and other parts of the visual system glows red when it’s activated. You can see the lens of the eye, the head, and neuromasts (those red dots around the rim of the image) glowing red, while the nervous system glows blue.

BLOOD VESSELS OF THE AFRICAN GREY PARROT

This image was created using a 3D reconstruction of a euthanized parrot. It models the system of blood vessels in the parrot’s head and neck down to the capillary level.

INTRAOCULAR LENS IRIS CLIP

Mark Bartley, Cambridge University Hospitals NHS Foundation Trust

Iris clips can treat nearsightedness, cataracts, and other eye issues. This photo shows an iris clip fitting on the eye of a 70-year-old patient. He regained nearly all his vision after the surgery.

BRAIN-ON-A-CHIP

Collin…

Human gene editing therapies are OK in certain cases, panel advises

bubble boy
EDITING OUT DISEASE Gene therapy can cure a genetic disease called severe combined immunodeficiency, or “bubble boy,” disease. Using new gene editing techniques like CRISPR/Cas9 to treat genetic diseases is fine under certain conditions, but it should not be used to enhance people, a panel of experts says.

Human gene editing to prevent genetic diseases from being passed to future generations may be permissible under certain conditions, a panel of experts says.

Altering DNA in germline cells — embryos, eggs, and sperm, or cells that give rise to them — may be used to cure genetic diseases for future generations, provided it is done only to correct disease or disability, not to enhance people’s health or abilities, a report issued February 14 by the National Academies of Sciences and Medicine recommends. The decision contradicts earlier recommendations by organizers of a global summit on human gene editing, who concluded that gene editing with molecular scissors such as CRISPR/Cas9 should not be used to produce babies (SN: 12/26/15, p. 12).

Heritable gene editing is not yet ready to be done in people, says Alta Charo, a bioethicist at the University of Wisconsin‒Madison Law School who cochaired the panel. “We are not trying to greenlight heritable germline editing. We’re trying to find that limited set of circumstances where its use is justified by a compelling need and its application is limited to that compelling need,” says Charo. “We’re giving it a yellow light.”

National Academies reports carry no legislative weight, but do often influence policy decisions in the United States and abroad. It will be up to Congress, regulatory agencies such as the U.S. Food and Drug Administration, and state and local governments to implement the recommendations.

Supporters of new genetic engineering technologies hailed the decision.

“It looks like the possibility of eliminating some genetic diseases is now more than a theoretical option,” says Sean Tipton, a spokesman for the American Society for Reproductive Medicine in Washington, D.C. “That’s what this sets up.” Diseases such as cystic fibrosis and Huntington’s, which are caused by mutations in single genes, could someday be corrected by gene editing. More complex diseases or disorders caused by changes in multiple genes, such as autism or schizophrenia, probably would not be the focus of genome editing.

Others worry that…